Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Exp Med ; 221(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38597953

ABSTRACT

Environmental airborne antigens are central to the development of allergic asthma, but the cellular processes that trigger disease remain incompletely understood. In this report, Schmitt et al. (https://doi.org/10.1084/jem.20231236) identify TNF-like protein 1A (TL1A) as an epithelial alarmin constitutively expressed by a subset of lung epithelial cells, which is released in response to airborne microbial challenge and synergizes with IL-33 to drive allergic disease.


Subject(s)
Asthma , Hypersensitivity , Humans , Alarmins , Epithelial Cells , Lung
2.
Cell Rep Med ; 5(3): 101431, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38378002

ABSTRACT

Sulfasalazine is a prodrug known to be effective for the treatment of inflammatory bowel disease (IBD)-associated peripheral spondyloarthritis (pSpA), but the mechanistic role for the gut microbiome in regulating its clinical efficacy is not well understood. Here, treatment of 22 IBD-pSpA subjects with sulfasalazine identifies clinical responders with a gut microbiome enriched in Faecalibacterium prausnitzii and the capacity for butyrate production. Sulfapyridine promotes butyrate production and transcription of the butyrate synthesis gene but in F. prausnitzii in vitro, which is suppressed by excess folate. Sulfasalazine therapy enhances fecal butyrate production and limits colitis in wild-type and gnotobiotic mice colonized with responder, but not non-responder, microbiomes. F. prausnitzii is sufficient to restore sulfasalazine protection from colitis in gnotobiotic mice colonized with non-responder microbiomes. These findings reveal a mechanistic link between the efficacy of sulfasalazine therapy and the gut microbiome with the potential to guide diagnostic and therapeutic approaches for IBD-pSpA.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Mice , Animals , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Treatment Outcome , Butyrates
3.
J Crohns Colitis ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38141256

ABSTRACT

BACKGROUND AND AIMS: Ritlecitinib, an oral JAK3/TEC family kinase inhibitor, was well- tolerated and efficacious in the phase 2b VIBRATO study in participants with moderate-to-severe ulcerative colitis (UC). The aim of this study was to identify baseline serum and microbiome markers that predict subsequent clinical efficacy and to develop noninvasive serum signatures as potential real-time noninvasive surrogates of clinical efficacy after ritlecitinib. METHODS: Tissue and peripheral blood proteomics, transcriptomics, and fecal metagenomics were performed on samples before and after 8-week oral ritlecitinib induction therapy (20 mg, 70 mg, 200 mg, or placebo once daily, N=39, 41, 33, and 18, respectively). Linear mixed models were used to identify baseline and longitudinal protein markers associated with efficacy. The combined predictivity of these proteins was evaluated using a logistic model with permuted efficacy data. Differential expression of fecal metagenomic was used to differentiate responders and nonresponders. RESULTS: Peripheral blood serum proteomics identified 4 baseline serum markers (LTA, CCL21, HLA-E, MEGF10) predictive of modified clinical remission (MR), endoscopic improvement (EI), histologic remission (HR), and integrative score of tissue molecular improvement. In responders, 37 serum proteins significantly changed at Week 8 compared with baseline (FDR<0.05); of these, changes in 4 (IL4R, TNFRSF4, SPINK4, and LAIR-1) predicted concurrent EI and HR responses. Fecal metagenomics analysis revealed baseline and treatment response signatures that correlated with EI, MR, and tissue molecular improvement. CONCLUSIONS: Blood and microbiome biomarkers stratify endoscopic, histologic, and tissue molecular response to ritlecitinib, which may help guide future precision medicine approaches to UC treatment.

4.
Nat Commun ; 14(1): 7363, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963876

ABSTRACT

Environmental factors are the major contributor to the onset of immunological disorders such as ulcerative colitis. However, their identities remain unclear. Here, we discover that the amount of consumed L-Tryptophan (L-Trp), a ubiquitous dietary component, determines the transcription level of the colonic T cell homing receptor, GPR15, hence affecting the number of colonic FOXP3+ regulatory T (Treg) cells and local immune homeostasis. Ingested L-Trp is converted by host IDO1/2 enzymes, but not by gut microbiota, to compounds that induce GPR15 transcription preferentially in Treg cells via the aryl hydrocarbon receptor. Consequently, two weeks of dietary L-Trp supplementation nearly double the colonic GPR15+ Treg cells via GPR15-mediated homing and substantially reduce the future risk of colitis. In addition, humans consume 3-4 times less L-Trp per kilogram of body weight and have fewer colonic GPR15+ Treg cells than mice. Thus, we uncover a microbiota-independent mechanism linking dietary L-Trp and colonic Treg cells, that may have therapeutic potential.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Mice , Animals , T-Lymphocytes, Regulatory , Tryptophan , Colitis/chemically induced , Colon , Receptors, Peptide , Receptors, G-Protein-Coupled/genetics
5.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36538527

ABSTRACT

Chronic exposure to high-fat diets (HFD) worsens intestinal disease pathology, but acute effects of HFD in tissue damage remain unclear. Here, we used short-term HFD feeding in a model of intestinal injury and found sustained damage with increased cecal dead neutrophil accumulation, along with dietary lipid accumulation. Neutrophil depletion rescued enhanced pathology. Macrophages from HFD-treated mice showed reduced capacity to engulf dead neutrophils. Macrophage clearance of dead neutrophils activates critical barrier repair and antiinflammatory pathways, including IL-10, which was lost after acute HFD feeding and intestinal injury. IL-10 overexpression restored intestinal repair after HFD feeding and intestinal injury. Macrophage exposure to lipids from the HFD prevented tethering and uptake of apoptotic cells and Il10 induction. Milk fat globule-EGF factor 8 (MFGE8) is a bridging molecule that facilitates macrophage uptake of dead cells. MFGE8 also facilitates lipid uptake, and we demonstrate that dietary lipids interfere with MFGE8-mediated macrophage apoptotic neutrophil uptake and subsequent Il10 production. Our findings demonstrate that HFD promotes intestinal pathology by interfering with macrophage clearance of dead neutrophils, leading to unresolved tissue damage.


Subject(s)
Diet, High-Fat , Interleukin-10 , Mice , Animals , Intestines , Macrophages/physiology , Lipids
6.
J Crohns Colitis ; 17(5): 795-803, 2023 May 03.
Article in English | MEDLINE | ID: mdl-36322790

ABSTRACT

BACKGROUND: Most Crohn's disease [CD] patients require surgery. Ileitis recurs after most ileocolectomies and is a critical determinant for outcomes. The impacts of ileocolectomy-induced bile acid [BA] perturbations on intestinal microbiota and inflammation are unknown. We characterized the relationships between ileocolectomy, stool BAs, microbiota and intestinal inflammation in inflammatory bowel disease [IBD]. METHODS: Validated IBD clinical and endoscopic assessments were prospectively collected. Stool primary and secondary BA concentrations were compared based on ileocolectomy and ileitis status. Primary BA thresholds for ileitis were evaluated. Metagenomic sequencing was use to profile microbial composition and function. Relationships between ileocolectomy, BAs and microbiota were assessed. RESULTS: In 166 patients, elevated primary and secondary BAs existed with ileocolectomy. With ileitis, only primary BAs [795 vs 398 nmol/g, p = 0.009] were higher compared to without ileitis. The optimal primary BA threshold [≥228 nmol/g] identified ileitis on multivariable analysis [odds ratio = 2.3, p = 0.04]. Microbial diversity, Faecalibacterium prausnitzii and O-acetylhomoserine aminocarboxypropyltransferase [MetY] were decreased with elevated primary BAs. Amongst ileocolectomy patients, only those with elevated primary BAs had diversity, F. prausnitzii and MetY reductions. Those with both ileocolectomy and intermediate [p = 0.002] or high [≥228 nmol/g, p = 9.1e-11]] primary BA concentrations had reduced F. prausnitzii compared to without ileocolectomy. Those with ileocolectomy and low [<29.2 nmol/g] primary BA concentrations had similar F. prausnitzii to those without ileocolectomy [p = 0.13]. MetY was reduced with ileitis [p = 0.02]. CONCLUSIONS: Elevated primary BAs were associated with ileitis, and reduced microbial diversity, F. prausnitzii abundance and enzymatic abundance of MetY [acetate and l-methionine-producing enzyme expressed by F. prausnitzii], and were the only factors associated with these findings after ileocolectomy.


Subject(s)
Gastrointestinal Microbiome , Ileitis , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/surgery , Inflammatory Bowel Diseases/microbiology , Inflammation , Ileitis/surgery , Ileitis/microbiology , Colectomy , Bile Acids and Salts
7.
Cell Rep ; 41(7): 111637, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384110

ABSTRACT

Endoplasmic reticulum (ER) stress is associated with Crohn's disease (CD), but its impact on host-microbe interaction in disease pathogenesis is not well defined. Functional deficiency in the protein disulfide isomerase anterior gradient 2 (AGR2) has been linked with CD and leads to epithelial cell ER stress and ileocolitis in mice and humans. Here, we show that ileal expression of AGR2 correlates with mucosal Enterobactericeae abundance in human inflammatory bowel disease (IBD) and that Agr2 deletion leads to ER-stress-dependent expansion of mucosal-associated adherent-invasive Escherichia coli (AIEC), which drives Th17 cell ileocolitis in mice. Mechanistically, our data reveal that AIEC-induced epithelial cell ER stress triggers CD103+ dendritic cell production of interleukin-23 (IL-23) and that IL-23R is required for ileocolitis in Agr2-/- mice. Overall, these data reveal a specific and reciprocal interaction of the expansion of the CD pathobiont AIEC with ER-stress-associated ileocolitis and highlight a distinct cellular mechanism for IL-23-dependent ileocolitis.


Subject(s)
Crohn Disease , Dysbiosis , Escherichia coli Infections , Mucoproteins , Animals , Humans , Mice , Crohn Disease/genetics , Crohn Disease/microbiology , Dendritic Cells , Escherichia coli , Interleukin-23 , Mucoproteins/genetics , Oncogene Proteins
8.
World J Gastroenterol ; 28(33): 4834-4845, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36156920

ABSTRACT

BACKGROUND: Patients with inflammatory bowel disease (IBD) are prone to several nutritional deficiencies. However, data are lacking on vitamin C deficiency in Crohn's disease (CD) and ulcerative colitis (UC) patients, as well as the impact of clinical, biomarker and endoscopic disease severity on the development of vitamin C deficiency. AIM: To determine proportions and factors associated with vitamin C deficiency in CD and UC patients. METHODS: In this retrospective study, we obtained clinical, laboratory and endoscopic data from CD and UC patients presenting to the IBD clinic at a single tertiary care center from 2014 to 2019. All patients had an available plasma vitamin C level. Of 353 subjects who met initial search criteria using a cohort discovery tool, 301 ultimately met criteria for inclusion in the study. The primary aim described vitamin C deficiency (≤ 11.4 µmol/L) rates in IBD. Secondary analyses compared proportions with deficiency between active and inactive IBD. Multivariate logistic regression analysis evaluated factors associated with deficiency. RESULTS: Of 301 IBD patients, 21.6% had deficiency, including 24.4% of CD patients and 16.0% of UC patients. Patients with elevated C-reactive protein (CRP) (39.1% vs 16.9%, P < 0.001) and fecal calprotectin (50.0% vs 20.0%, P = 0.009) had significantly higher proportions of deficiency compared to those without. Penetrating disease (P = 0.03), obesity (P = 0.02) and current biologic use (P = 0.006) were also associated with deficiency on univariate analysis. On multivariate analysis, the objective inflammatory marker utilized for analysis (elevated CRP) was the only factor associated with deficiency (odds ratio = 3.1, 95% confidence interval: 1.5-6.6, P = 0.003). There was no difference in the presence of clinical symptoms of scurvy in those with vitamin C deficiency and those without. CONCLUSION: Vitamin C deficiency was common in IBD. Patients with elevated inflammatory markers and penetrating disease had higher rates of vitamin C deficiency.


Subject(s)
Ascorbic Acid Deficiency , Biological Products , Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Scurvy , Vitamin D Deficiency , Ascorbic Acid , Ascorbic Acid Deficiency/complications , Ascorbic Acid Deficiency/epidemiology , Biomarkers , C-Reactive Protein/analysis , Chronic Disease , Colitis, Ulcerative/complications , Crohn Disease/diagnosis , Crohn Disease/epidemiology , Humans , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/epidemiology , Leukocyte L1 Antigen Complex/metabolism , Prevalence , Retrospective Studies , Scurvy/complications
9.
Gut Microbes ; 14(1): 2119054, 2022.
Article in English | MEDLINE | ID: mdl-36062329

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic life-long inflammatory disease affecting almost 2 million Americans. Although new biologic therapies have been developed, the standard medical treatment fails to selectively control the dysregulated immune pathways involved in chronic colonic inflammation. Further, IBD patients with uncontrolled colonic inflammation are at a higher risk for developing colorectal cancer (CRC). Intestinal microbes can impact many immune functions, and here we asked if they could be used to improve intestinal inflammation. By utilizing an intestinal adherent E. coli that we find increases IL-10 producing macrophages, we were able to limit intestinal inflammation and restrict tumor formation. Macrophage IL-10 along with IL-10 signaling to the intestinal epithelium were required for protection in both inflammation and tumor development. Our work highlights that administration of immune modulating microbes can improve intestinal outcomes by altering tissue inflammation.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Animals , Disease Models, Animal , Escherichia coli , Humans , Inflammation , Inflammatory Bowel Diseases/therapy , Interleukin-10 , Macrophages
10.
Immunity ; 55(6): 1051-1066.e4, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35649416

ABSTRACT

Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of ∼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.


Subject(s)
Bacteriophages , Peptide Library , Amino Acid Sequence , Antibodies , Antibody Formation , Bacteriophages/genetics , Genome-Wide Association Study , Humans , Immunodominant Epitopes , Prevalence , Virulence Factors/genetics
11.
Nature ; 603(7903): 907-912, 2022 03.
Article in English | MEDLINE | ID: mdl-35296854

ABSTRACT

The microbiota modulates gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17A (TH17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits TH17 cell differentiation1. Although it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown, and it was unclear whether 3-oxoLCA and other immunomodulatory bile acids are associated with inflammatory pathologies in humans. Here we identify human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Similar to 3-oxoLCA, isoLCA suppressed TH17 cell differentiation by inhibiting retinoic acid receptor-related orphan nuclear receptor-γt, a key TH17-cell-promoting transcription factor. The levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase genes that are required for their biosynthesis were significantly reduced in patients with inflammatory bowel disease. Moreover, the levels of these bile acids were inversely correlated with the expression of TH17-cell-associated genes. Overall, our data suggest that bacterially produced bile acids inhibit TH17 cell function, an activity that may be relevant to the pathophysiology of inflammatory disorders such as inflammatory bowel disease.


Subject(s)
Bacteria , Bile Acids and Salts , Inflammatory Bowel Diseases , Bacteria/metabolism , Cell Differentiation , Gastrointestinal Tract/microbiology , Humans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/microbiology , Interleukin-17 , Lithocholic Acid/metabolism , Lithocholic Acid/pharmacology , Th17 Cells
12.
J Clin Gastroenterol ; 56(3): e176-e182, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35180182

ABSTRACT

BACKGROUND: Delays in biologic or small molecule medication administration are associated with increased adverse events, hospitalization, and surgery in inflammatory bowel disease (IBD). We evaluated the impact of a quality improvement (QI) intervention on the time to administration of biologics or small molecules (TABS) in IBD. METHODS: Data were retrospectively extracted for IBD patients prescribed biologics or small molecules from a convenience sample of providers participating in an accredited QI educational intervention (baseline cohort). Subsequent to the intervention, data were prospectively collected from patients prescribed these medications (postintervention cohort). Dates related to steps between a treatment decision to medication administration were collected. The primary outcome compared TABS in baseline and postintervention cohorts. RESULTS: Eighteen physicians provided survey and patient data for 200 patients in each cohort (n=400). The median time to medication administration (TABS) decreased from baseline to postintervention cohorts (30 vs. 26 d, P=0.04). Emergency room visits before medication administration also decreased (25.5% vs. 12.5%, P=0.001). Similar numerical TABS reductions were observed in subgroups limited to physicians providing patients to both cohorts and for individual medications prescribed. Primary contributors to delays included filling prescriptions subsequent to insurance approval and dispensation subsequent to this. CONCLUSIONS: A QI intervention successfully reduced medication administration times (TABS) by accelerating provider-dependent steps. This intervention was associated with reduced emergency room visits. We propose TABS as a quality metric to assess the effective delivery of therapies in IBD. Further evaluation of QI interventions, patient education on prescription drug insurance, and quality metrics are warranted.


Subject(s)
Biological Products , Inflammatory Bowel Diseases , Biological Products/adverse effects , Emergency Service, Hospital , Humans , Inflammatory Bowel Diseases/drug therapy , Quality Improvement , Retrospective Studies
13.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051369

ABSTRACT

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Subject(s)
Gastrointestinal Microbiome/genetics , Genes, Bacterial , Animals , Bile Acids and Salts/metabolism , CRISPR-Cas Systems/genetics , Clostridium/genetics , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Dextran Sulfate , Drug Resistance, Microbial/genetics , Female , Gene Expression Regulation, Bacterial , Gene Transfer Techniques , Germ-Free Life , Inflammation/pathology , Intestines/pathology , Male , Metabolome/genetics , Metagenomics , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Insertional/genetics , Mutation/genetics , RNA, Ribosomal, 16S/genetics , Transcription, Genetic
14.
Clin Gastroenterol Hepatol ; 20(6): e1493-e1499, 2022 06.
Article in English | MEDLINE | ID: mdl-34896283

ABSTRACT

Immunization against the spike protein of SARS-CoV-2 reduces transmission1,2 and severe outcomes. However, little is known regarding the impact of immune-mediated diseases and immunosuppressive medications on the efficacy of vaccination. Vaccination immunity is transient, with breakthrough cases increasing at longer time intervals since the last dose.3,4 Although there are data on SARS-CoV-2 vaccine on early seroconversion in patients with inflammatory bowel disease (IBD),5 no data in the same cohort exist describing the durability of these antibodies over time. We sought to investigate the impact of IBD and its therapies on postvaccination antibody response and kinetics of immunogenicity decline, because these findings may better inform clinical guidelines and recommendations on precautions and booster vaccination.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Antibodies, Viral/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines , Chronic Disease , Humans , Inflammatory Bowel Diseases/drug therapy , SARS-CoV-2 , Vaccination
15.
Gastroenterology ; 162(1): 166-178, 2022 01.
Article in English | MEDLINE | ID: mdl-34606847

ABSTRACT

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) is an emerging treatment modality for ulcerative colitis (UC). Several randomized controlled trials have shown efficacy for FMT in the treatment of UC, but a better understanding of the transferable microbiota and their immune impact is needed to develop more efficient microbiome-based therapies for UC. METHODS: Metagenomic analysis and strain tracking was performed on 60 donor and recipient samples receiving FMT for active UC. Sorting and sequencing of immunoglobulin (Ig) A-coated microbiota (called IgA-seq) was used to define immune-reactive microbiota. Colonization of germ-free or genetically engineered mice with patient-derived strains was performed to determine the mechanism of microbial impact on intestinal immunity. RESULTS: Metagenomic analysis defined a core set of donor-derived transferable bacterial strains in UC subjects achieving clinical response, which predicted response in an independent trial of FMT for UC. IgA-seq of FMT recipient samples and gnotobiotic mice colonized with donor microbiota identified Odoribacter splanchnicus as a transferable strain shaping mucosal immunity, which correlated with clinical response and the induction of mucosal regulatory T cells. Colonization of mice with O splanchnicus led to an increase in Foxp3+/RORγt+ regulatory T cells, induction of interleukin (IL) 10, and production of short chain fatty acids, all of which were required for O splanchnicus to limit colitis in mouse models. CONCLUSIONS: This work provides the first evidence of transferable, donor-derived strains that correlate with clinical response to FMT in UC and reveals O splanchnicus as a key component promoting both metabolic and immune cell protection from colitis. These mechanistic features will help enable strategies to enhance the efficacy of microbial therapy for UC. Clinicaltrials.gov ID NCT02516384.


Subject(s)
Bacteroidetes/immunology , Colitis/therapy , Colon/microbiology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Immunoglobulin A/immunology , Intestinal Mucosa/microbiology , Animals , Bacteroidetes/genetics , Bacteroidetes/metabolism , Clinical Trials as Topic , Colitis/immunology , Colitis/metabolism , Colitis/microbiology , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colon/immunology , Colon/metabolism , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Germ-Free Life , Humans , Immunity, Mucosal , Immunoglobulin A/genetics , Immunoglobulin A/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Intraepithelial Lymphocytes/microbiology , Metagenome , Metagenomics , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/microbiology , Treatment Outcome
16.
J Crohns Colitis ; 16(3): 341-342, 2022 03 14.
Article in English | MEDLINE | ID: mdl-34718490
17.
Nat Microbiol ; 6(12): 1493-1504, 2021 12.
Article in English | MEDLINE | ID: mdl-34811531

ABSTRACT

Secretory immunoglobulin A (sIgA) plays an important role in gut barrier protection by shaping the resident microbiota community, restricting the growth of bacterial pathogens and enhancing host protective immunity via immunological exclusion. Here, we found that a portion of the microbiota-driven sIgA response is induced by and directed towards intestinal fungi. Analysis of the human gut mycobiota bound by sIgA revealed a preference for hyphae, a fungal morphotype associated with virulence. Candida albicans was a potent inducer of IgA class-switch recombination among plasma cells, via an interaction dependent on intestinal phagocytes and hyphal programming. Characterization of sIgA affinity and polyreactivity showed that hyphae-associated virulence factors were bound by these antibodies and that sIgA influenced C. albicans morphotypes in the murine gut. Furthermore, an increase in granular hyphal morphologies in patients with Crohn's disease compared with healthy controls correlated with a decrease in antifungal sIgA antibody titre with affinity to two hyphae-associated virulence factors. Thus, in addition to its importance in gut bacterial regulation, sIgA targets the uniquely fungal phenomenon of hyphal formation. Our findings indicate that antifungal sIgA produced in the gut can play a role in regulating intestinal fungal commensalism by coating fungal morphotypes linked to virulence, thereby providing a protective mechanism that might be dysregulated in patients with Crohn's disease.


Subject(s)
Crohn Disease/microbiology , Fungi/physiology , Gastrointestinal Microbiome , Immunoglobulin A, Secretory/immunology , Symbiosis , Animals , Candida albicans/genetics , Candida albicans/physiology , Crohn Disease/genetics , Crohn Disease/immunology , Female , Fungi/genetics , Host-Pathogen Interactions , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Phagocytes/immunology , Phagocytes/microbiology
19.
J Clin Invest ; 131(9)2021 05 03.
Article in English | MEDLINE | ID: mdl-33938448

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the intestine associated with genetic susceptibility and alterations in the intestinal microbiome. Multiomics data developed and analyzed over the last several decades have yielded an unprecedented amount of genetic and microbial data. But how do we pinpoint mechanistic insight into the host-microbe relationship that will ultimately enable better care for patients with IBD? In this issue of the JCI, Grasberger et al. undertook a major decoding effort to decipher this multiomic data matrix. The authors analyzed anonymized data from more than 2800 individuals to discover a link between heterozygous carriers of deleterious DUOX2 variants and high levels of plasma IL-17C. These findings provide an example of how harnessing big data can drive mechanistic discovery to define disease biomarkers that have the potential to improve clinical care in IBD.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Biomarkers , Gastrointestinal Microbiome/genetics , Humans , Inflammatory Bowel Diseases/genetics , Interleukin-17
20.
Nature ; 594(7863): 413-417, 2021 06.
Article in English | MEDLINE | ID: mdl-33981034

ABSTRACT

Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection1. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses1,2. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described3,4. Although the local environment shapes the differentiation of effector cells3-5 it is unclear how microbiota-specific T cells are educated in the thymus. Here we show that intestinal colonization in early life leads to the trafficking of microbial antigens from the intestine to the thymus by intestinal dendritic cells, which then induce the expansion of microbiota-specific T cells. Once in the periphery, microbiota-specific T cells have pathogenic potential or can protect against related pathogens. In this way, the developing microbiota shapes and expands the thymic and peripheral T cell repertoire, allowing for enhanced recognition of intestinal microorganisms and pathogens.


Subject(s)
Dendritic Cells/immunology , Gastrointestinal Microbiome/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Aging/immunology , Animals , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , CX3C Chemokine Receptor 1/metabolism , DNA, Bacterial/analysis , Dendritic Cells/metabolism , Escherichia coli/immunology , Female , Male , Mice , Organ Specificity , Salmonella/immunology , Symbiosis/immunology , Thymus Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...